How To Cross-Compile Clang/LLVM using Clang/LLVM¶
Introduction¶
This document contains information about building LLVM and Clang on host machine, targeting another platform.
For more information on how to use Clang as a cross-compiler, please check http://clang.llvm.org/docs/CrossCompilation.html.
TODO: Add MIPS and other platforms to this document.
Cross-Compiling from x86_64 to ARM¶
In this use case, we’ll be using CMake and Ninja, on a Debian-based Linux system, cross-compiling from an x86_64 host (most Intel and AMD chips nowadays) to a hard-float ARM target (most ARM targets nowadays).
The packages you’ll need are:
cmake
ninja-build
(from backports in Ubuntu)gcc-4.7-arm-linux-gnueabihf
gcc-4.7-multilib-arm-linux-gnueabihf
binutils-arm-linux-gnueabihf
libgcc1-armhf-cross
libsfgcc1-armhf-cross
libstdc++6-armhf-cross
libstdc++6-4.7-dev-armhf-cross
Configuring CMake¶
For more information on how to configure CMake for LLVM/Clang, see Building LLVM with CMake.
- The CMake options you need to add are:
-DCMAKE_CROSSCOMPILING=True
-DCMAKE_INSTALL_PREFIX=<install-dir>
-DLLVM_TABLEGEN=<path-to-host-bin>/llvm-tblgen
-DCLANG_TABLEGEN=<path-to-host-bin>/clang-tblgen
-DLLVM_DEFAULT_TARGET_TRIPLE=arm-linux-gnueabihf
-DLLVM_TARGET_ARCH=ARM
-DLLVM_TARGETS_TO_BUILD=ARM
-DCMAKE_CXX_FLAGS='-target armv7a-linux-gnueabihf -mcpu=cortex-a9 -I/usr/arm-linux-gnueabihf/include/c++/4.7.2/arm-linux-gnueabihf/ -I/usr/arm-linux-gnueabihf/include/ -mfloat-abi=hard -ccc-gcc-name arm-linux-gnueabihf-gcc'
The TableGen options are required to compile it with the host compiler,
so you’ll need to compile LLVM (or at least llvm-tblgen
) to your host
platform before you start. The CXX flags define the target, cpu (which
defaults to fpu=VFP3
with NEON), and forcing the hard-float ABI. If you’re
using Clang as a cross-compiler, you will also have to set -ccc-gcc-name
,
to make sure it picks the correct linker.
Most of the time, what you want is to have a native compiler to the
platform itself, but not others. It might not even be feasible to
produce x86 binaries from ARM targets, so there’s no point in compiling
all back-ends. For that reason, you should also set the
TARGETS_TO_BUILD
to only build the ARM back-end.
You must set the CMAKE_INSTALL_PREFIX
, otherwise a ninja install
will copy ARM binaries to your root filesystem, which is not what you
want.
Hacks¶
There are some bugs in current LLVM, which require some fiddling before running CMake:
If you’re using Clang as the cross-compiler, there is a problem in the LLVM ARM back-end that is producing absolute relocations on position-independent code (
R_ARM_THM_MOVW_ABS_NC
), so for now, you should disable PIC:-DLLVM_ENABLE_PIC=False
This is not a problem, since Clang/LLVM libraries are statically linked anyway, it shouldn’t affect much.
The ARM libraries won’t be installed in your system, and possibly not easily installable anyway, so you’ll have to build/download them separately. But the CMake prepare step, which checks for dependencies, will check the host libraries, not the target ones.
A quick way of getting the libraries is to download them from a distribution repository, like Debian (http://packages.debian.org/wheezy/), and download the missing libraries. Note that the
libXXX
will have the shared objects (.so
) and thelibXXX-dev
will give you the headers and the static (.a
) library. Just in case, download both.The ones you need for ARM are:
libtinfo
,zlib1g
,libxml2
andliblzma
. In the Debian repository you’ll find downloads for all architectures.After you download and unpack all
.deb
packages, copy all.so
and.a
to a directory, make the appropriate symbolic links (if necessary), and add the relevant-L
and-I
paths to-DCMAKE_CXX_FLAGS
above.
Running CMake and Building¶
Finally, if you’re using your platform compiler, run:
$ cmake -G Ninja <source-dir> <options above>
If you’re using Clang as the cross-compiler, run:
$ CC='clang' CXX='clang++' cmake -G Ninja <source-dir> <options above>
If you have clang
/clang++
on the path, it should just work, and special
Ninja files will be created in the build directory. I strongly suggest
you to run cmake
on a separate build directory, not inside the
source tree.
To build, simply type:
$ ninja
It should automatically find out how many cores you have, what are the rules that needs building and will build the whole thing.
You can’t run ninja check-all
on this tree because the created
binaries are targeted to ARM, not x86_64.
Installing and Using¶
After the LLVM/Clang has built successfully, you should install it via:
$ ninja install
which will create a sysroot on the install-dir. You can then tar that directory into a binary with the full triple name (for easy identification), like:
$ ln -sf <install-dir> arm-linux-gnueabihf-clang $ tar zchf arm-linux-gnueabihf-clang.tar.gz arm-linux-gnueabihf-clang
If you copy that tarball to your target board, you’ll be able to use it for running the test-suite, for example. Follow the guidelines at http://llvm.org/docs/lnt/quickstart.html, unpack the tarball in the test directory, and use options:
$ ./sandbox/bin/python sandbox/bin/lnt runtest nt \ --sandbox sandbox \ --test-suite `pwd`/test-suite \ --cc `pwd`/arm-linux-gnueabihf-clang/bin/clang \ --cxx `pwd`/arm-linux-gnueabihf-clang/bin/clang++
Remember to add the -jN
options to lnt
to the number of CPUs
on your board. Also, the path to your clang has to be absolute, so
you’ll need the pwd trick above.